33 research outputs found

    Impact of the carbon flux regulator protein pirC on ethanol production in engineered cyanobacteria

    Get PDF
    Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms such as cyanobacteria, which are engineered to synthesize valuable products directly from CO2 and sunlight. For example, strains of the model organism Synechocystis sp. PCC 6803 have been generated to produce ethanol. Here, we performed a study to prove the hypothesis that carbon flux in the direction of pyruvate is one bottleneck to achieve high ethanol titers in cyanobacteria. Ethanol-producing strains of the cyanobacterium Synechocystis sp. PCC 6803 were generated that bear mutation in the gene pirC aiming to increase carbon flux towards pyruvate. The strains were cultivated at different nitrogen or carbon conditions and the ethanol production was analysed. Generally, a clear correlation between growth rate and ethanol production was found. The mutation of pirC, however, had only a positive impact on ethanol titers under nitrogen depletion. The increase in ethanol was accompanied by elevated pyruvate and lowered glycogen levels indicating that the absence of pirC indeed increased carbon partitioning towards lower glycolysis. Metabolome analysis revealed that this change in carbon flow had also a marked impact on the overall primary metabolism in Synechocystis sp. PCC 6803. Deletion of pirC improved ethanol production under specific conditions supporting the notion that a better understanding of regulatory mechanisms involved in cyanobacterial carbon partitioning is needed to engineer more productive cyanobacterial strains

    Inquiry in University Mathematics Teaching and Learning

    Get PDF
    The book presents developmental outcomes from an EU Erasmus+ project involving eight partner universities in seven countries in Europe. Its focus is the development of mathematics teaching and learning at university level to enhance the learning of mathematics by university students. Its theoretical focus is inquiry-based teaching and learning. It bases all activity on a three-layer model of inquiry: (1) Inquiry in mathematics and in the learning of mathematics in lecture, tutorial, seminar or workshop, involving students and teachers; (2) Inquiry in mathematics teaching involving teachers exploring and developing their own practices in teaching mathematics; (3) Inquiry as a research process, analysing data from layers (1) and (2) to advance knowledge inthe field. As required by the Erasmus+ programme, it defines Intellectual Outputs (IOs) that will develop in the project. PLATINUM has six IOs: The Inquiry-based developmental model; Inquiry communities in mathematics learning and teaching; Design of mathematics tasks and teaching units; Inquiry-based professional development activity; Modelling as an inquiry process; Evalutation of inquiry activity with students. The project has developed Inquiry Communities, in each of the partner groups, in which mathematicians and educators work together in supportive collegial ways to promote inquiry processes in mathematics learning and teaching. Through involving students in inquiry activities, PLATINUM aims to encourage students` own in-depth engagement with mathematics, so that they develop conceptual understandings which go beyond memorisation and the use of procedures. Indeed the eight partners together have formed an inquiry community, working together to achieve PLATINUM goals within the specific environments of their own institutions and cultures. Together we learn from what we are able to achieve with respect to both common goals and diverse environments, bringing a richness of experience and learning to this important area of education. Inquiry communities enable participants to address the tensions and issues that emerge in developmental processes and to recognise the critical nature of the developmental process. Through engaging in inquiry-based development, partners are enabled and motivated to design activities for their peers, and for newcomers to university teaching of mathematics, to encourage their participation in new forms of teaching, design of teaching, and activities for students. Such professional development design is an important outcome of PLATINUM. One important area of inquiry-based activity is that of “modelling” in mathematics. Partners have worked together across the project to investigate the nature of modelling activities and their use with students. Overall, the project evaluates its activity in these various parts to gain insights to the sucess of inquiry based teaching, learning and development as well as the issues and tensions that are faced in putting into practice its aims and goals

    Inquiry in University Mathematics Teaching and Learning. The Platinum Project

    Get PDF
    The book presents developmental outcomes from an EU Erasmus+ project involving eight partner universities in seven countries in Europe. Its focus is the development of mathematics teaching and learning at university level to enhance the learning of mathematics by university students. Its theoretical focus is inquiry-based teaching and learning. It bases all activity on a three-layer model of inquiry: (1) Inquiry in mathematics and in the learning of mathematics in lecture, tutorial, seminar or workshop, involving students and teachers; (2) Inquiry in mathematics teaching involving teachers exploring and developing their own practices in teaching mathematics; (3) Inquiry as a research process, analysing data from layers (1) and (2) to advance knowledge inthe field. As required by the Erasmus+ programme, it defines Intellectual Outputs (IOs) that will develop in the project. PLATINUM has six IOs: The Inquiry-based developmental model; Inquiry communities in mathematics learning and teaching; Design of mathematics tasks and teaching units; Inquiry-based professional development activity; Modelling as an inquiry process; Evalutation of inquiry activity with students. The project has developed Inquiry Communities, in each of the partner groups, in which mathematicians and educators work together in supportive collegial ways to promote inquiry processes in mathematics learning and teaching. Through involving students in inquiry activities, PLATINUM aims to encourage students‘ own in-depth engagement with mathematics, so that they develop conceptual understandings which go beyond memorisation and the use of procedures. Indeed the eight partners together have formed an inquiry community, working together to achieve PLATINUM goals within the specific environments of their own institutions and cultures. Together we learn from what we are able to achieve with respect to both common goals and diverse environments, bringing a richness of experience and learning to this important area of education. Inquiry communities enable participants to address the tensions and issues that emerge in developmental processes and to recognise the critical nature of the developmental process. Through engaging in inquiry-based development, partners are enabled and motivated to design activities for their peers, and for newcomers to university teaching of mathematics, to encourage their participation in new forms of teaching, design of teaching, and activities for students. Such professional development design is an important outcome of PLATINUM. One important area of inquiry-based activity is that of „modelling“ in mathematics. Partners have worked together across the project to investigate the nature of modelling activities and their use with students. Overall, the project evaluates its activity in these various parts to gain insights to the sucess of inquiry based teaching, learning and development as well as the issues and tensions that are faced in putting into practice its aims and goals

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    Relative orientation of POTRA domains from cyanobacterial Omp85 studied by pulsed EPR spectroscopy

    No full text
    Many proteins of the outer membrane of Gram-negative bacteria and of the outer envelope of the endosymbiotically derived organelles mitochondria and plastids have a β-barrel fold. Their insertion is assisted by membrane proteins of the Omp85-TpsB superfamily. These proteins are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. Based on structural studies of Omp85 proteins, including the five POTRA-domain-containing BamA protein of Escherichia coli, it is predicted that anaP2 and anaP3 bear a fixed orientation, whereas anaP1 and anaP2 are connected via a flexible hinge. We challenged this proposal by investigating the conformational space of the N-terminal POTRA domains of Omp85 from the cyanobacterium Anabaena sp. PCC 7120 using pulsed electron-electron double resonance (PELDOR, or DEER) spectroscopy. The pronounced dipolar oscillations observed for most of the double spin-labeled positions indicate a rather rigid orientation of the POTRA domains in frozen liquid solution. Based on the PELDOR distance data, structure refinement of the POTRA domains was performed taking two different approaches: 1) treating the individual POTRA domains as rigid bodies; and 2) using an all-atom refinement of the structure. Both refinement approaches yielded ensembles of model structures that are more restricted compared to the conformational ensemble obtained by molecular dynamics simulations, with only a slightly different orientation of N-terminal POTRA domains anaP1 and anaP2 compared with the x-ray structure. The results are discussed in the context of the native environment of the POTRA domains in the periplasm
    corecore